

Typology of the regions of the Russian Federation from the standpoint of developing a «green» economy with regard to the specifics of the economic space

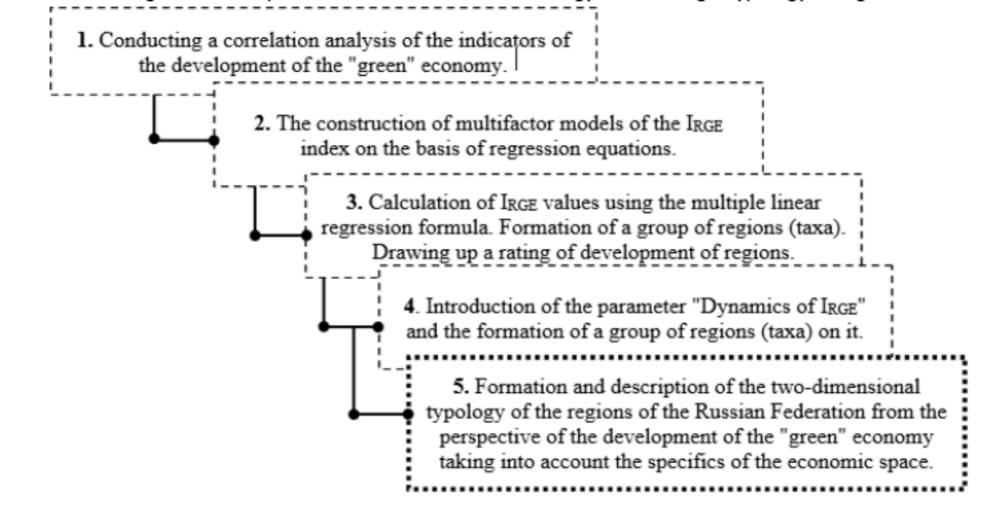
Tipología de las Regiones de la Federación de Rusia desde el punto de vista del desarrollo de una economía «verde» con respecto a las características específicas del espacio económico

Maria A. GUREVA 1

Received: 18/03/2018 • Approved: 23/04/2018

Contents

- 1. Introduction
- 2. Discussion
- 3. Conclusions
- Acknowledgement
- Bibliographic references


ABSTRACT:	RESUMEN:
The model for estimating the "green" economy of the territory	En el artículo se creó el modelo para estimar la economía "verde"
with the help of the tools of the IBM SPSS Statistics package was	del territorio con la ayuda de las herramientas del paquete IBM
created in the article. A forecast is made for the development of	SPSS Statistics. Se realiza un pronóstico para el desarrollo de la
the "green" economy of the UrFD subjects. A two-dimensional	economía "verde" de los sujetos de UrFD. Se propone una
typology of the regions of the Russian Federation is proposed from	tipología bidimensional de las regiones de la Federación de Rusia
the point of view of the development of the "green" economy. A	desde el punto de vista del desarrollo de la economía "verde". Un
portrait of typological groups of the parametric two-dimensional	retrato de los grupos tipológicos de la tipología paramétrica
typology of Russian regions is described.	bidimensional de las regiones rusas.
Keywords: «green» economy, typology, two-dimensional	Palabras clave: Economía «verde», tipología, tipología
typology, statistical analysis	bidimensional, análisis estadístico

1. Introduction

The array of the studied information data made it possible to arrive at a logical representation of the content of the sequence of stages in developing the author's methodology for creating a typology of Russian regions from the position of developing a "green" economy taking into account the specific economic space (Figure 1).

Figure 1

Stages of development of the author's methodology for creating a typology of regions

Source: Prepared by the authors.

Earlier in the study, 60 indicators were proposed to assess the level of development of the "green" economy, taking into account the territorial space of the region (Gurieva & Simarova, 2016). Taking into account the main principles and approaches to the typology procedure (Korableva, 2016; Lavrik, 2002), it was decided to develop a two-dimensional typology of the regions of the Russian Federation from the position of developing a "green" economy taking into account the specifics of the economic space.

2. Discussion

At the first stage, a correlation analysis was conducted on selected groups of indicators: economic development, social well-being, environmental development, innovation development, investment development in order to identify the most significant.

The IBM SPSS Statistics 22 software package included statistical data in the 2010 - 2014 timeframe, which correlates with one of the main principles of indicative planning, namely comparability. For effective visualization, the indexes were assigned their serial numbers (for example, 1.1, 5.3, etc.), which corresponds to their conventions in the methodology for assessing the level of development of the "green" economy (Gurieva & Simarova, 2016).

The aim of the study was to identify the mutual influence of individual indicators on the resulting (integrated) within each block (investment, social, innovation, economic, environmental), while eliminating the most disconnected indicators that have minimal impact. The assessment is based on the following indicators of correlation analysis:

- Kendall's Tay-b rank correlation coefficient (introduced by the British statistician M. J. Kendell in 1938, shows the measure of the linear relationship between random variables);

 r-Spearman correlation coefficient (proposed by PE Spearman in 1904, this is a nonparametric method used to investigate the correlation relationship between phenomena);

Pearson's correlation coefficient (developed in the nineties by the Group of Scientists, K. Pearson, F.
 Edgeworth and R. Weldon, shows the variability of the two variables).

When estimating the calculated values, the interpretation of the correlation coefficients was taken into account,

with due regard to the level of its correlation (Table 1).

Table 1

Interpretation of the values of the correlation coefficient.

Value Range	Characteristics of connection
r > 0,01 ≤ 0,29	weak positive connection
r > 0,30 ≤ 0,69	moderate positive connection
r > 0,70 ≤ 1,00	strong positive connection
r > - 0,01 ≤ - 0,29	weak negative connection

r > -0,30 ≤ - 0,69	moderate negative connection
r > - 0,70 ≤ - 1,00	strong negative connection

Source: Prepared by the authors.

Using the IBM SPSS Statistics 22 software package and the Analysis-Correlation tool, the following results were obtained from the relationship between the individual group estimate indicators and the complex indicator (Table 2).

Table 2The results of the correlation analysis of the system of indicators for assessing
the development of the "green" economy in the economic space.
The IBM SPSS Statistics package 22.

The block o	of indicators o	of economic developme	nt of the "g	greer	n" econ	omy		_								
			1.1	1	.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10	1.11	1.12	Th
endall's	1.1	Correlation coefficient	1,000		222	,429	049		,143	049	,143	,293		,619		fina ,810
au-b	1.1				333		-,048	· ·	-							
au-D		Significant (2-sided)			293	,176	,881	•	,652		,652 -	,362	•	,051		.01
			7		7	7	7	7	7	7	7	7	7	7	7	7
	The final	Correlation coefficient	,810*		143	,619	-,048		,333		-,048	,293		,429		1,0
		Significant (2-sided)	,011		552	,051	,881		,293	,453	,881	,362	•	,176		
		N	7		7	7	7	7	7	7	7	7	7	7	7	7
.0	1.1	Correlation coefficient	1,000	-,-	464	,571	-,143		,179	,000	,214	,414	•	,821 [*]		,89
pearman's		Significant (2-sided)		,2	<u>2</u> 94	,180	,760		,702	1,000	,645	,355		,023		,0
		Ν	7		7	7	7	7	7	7	7	7	7	7	7	-
	The final	Correlation coefficient	,893 ^{**}	-,	179	,786*	-,071		,500	-,286	,036	,342		,643		1,0
		Significant (2-sided)	,007		702	,036	,879		,253		,939	,452		,119		
		N	7		7	7	7	7	7	7	7	7	7	7	7	
.1	Pearson's Corr	elation	1		224	,572	-,734	a	,068		,292	,456	a	,689	a	,83
	Significant (2-		±		529	,179	,061		,885		,525	,304		,005		,02
		-	022						-							
		uares and cross products	,023		005	,000	,000	,000	-		,002	,002	,000	,007	,000	
	Covariance		,004		001	,000	,000	,00	-		,000	,000	,000	,001	,000	
	N		7		7	7	7	7	7	7	7	7	7	7	7	
	N		7		7	7	7	7	7	7	7	7	7	7	7	
he final	Pearson's Corr	elation	,834 [*]	,2	277	,817*	-,380	.a	,572	-,344	,174	,361	.a	,636	.a	:
	Significant (2-	sided)	,020	, -	548	,025	,401		,180	,450	,709	,426	•	,125		
	The sum of sq	uares and cross products	,003	,0	001	,000	,000	,00	,000	,000	,000,	,000	,000	,001	,000	,0
	Covariance		,000	,0	000	,000	,000	,00	000, 0	,000	,000,	,000	,000	,000	,000	,0
	N		7		7	7	7	7	7	7	7	7	7	7	7	7
Block of i	indicators of	social well-being of the	"areen" e	cono	mv								•	•	•	
block of 1		social well being of the	2.1		2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	2.10	2.11	2.12	The fi
Ken de We	2.1	Convolation	Ζ.,	T	2.2	2.5	2.4	2.5	2.0	2.7	2.0	2.9	2.10	2.11	2.12	men
Kendall's	2.1	Correlation	1,0	00	,714*	,810*	-,238	,390	-,714*	,714*	,810 [*]			-,238	,714*	,42
Tau-b		coefficient														
		Significant (2-			,024	,011	,453	,224	,024	,024	,011			,453	,024	,17
		sided)						-		•	-		-		-	
		Ν	7		7	7	7	7	7	7	7	7	7	7	7	7
	The final	Correlation	,42	0	,143	,238	,333	,586	-,143	,143	,429			-,238	,524	1,00
		coefficient	,42	_9	,143	,230	,555	,500	-,145	,143	,429	•	•	-,230	,524	1,00
		Significant (2-	17	<i></i>	652	450	202	000	652	650	170			450	000	
		sided)	,17	6	,652	,453	,293	,068	,652	,652	,176	•	•	,453	,099	•
		N	7		7	7	7	7	7	7	7	7	7	7	7	7
Ro	2.1	Correlation			¥	**			*	*	**				*	
Spearman	ı′s	coefficient	1,0	00	,857 [*]	,893 ^{**}	-,286	,360	-,857 [*]	,857 [*]	,929 ^{**}		•	-,536	,857 [*]	,42
		Significant (2-														
		sided)			,014	,007	,535	,427	,014	,014	,003			,215	,014	,33
		N	7		7	7	7	7	7	7	7	7	7	7	7	7
		N			,	/	/	/	, 	/		/		/	1	/
	···					+										
	The final	Correlation	,42	29	,143	,321	,500	,757 [*]	-,179	,179	,536			-,357	,679	1,0
		coefficient				+						-				-
		Significant (2-														

		sided)														
		N	7	7	7	7	7	7		7	7	7	7	7	7	7
2.1	Pearson's correlation	1	1	,489	,923 ^{**}	-,158	,335	-,61	8,	651	,488	.b	. ^b	-,475	,549	,704
	Significant (2-sided)			,265	,003	,734	,463	,139	,	113	,266			,282	,202	,078
	N		7	7	7	7	7	7		7	7	7	7	7	7	7
 The final	Pearson's correlation		,704	,160	,556	,367	,680	-,22		198	,270			,282	,202	,078
	Significant (2-sided)		,078	,732	,195	,418	,093	,624	ļ,	671	,559	7	7	7	7	7
he block of	N indicators of ecolog	jical development o	7 of the "gree	7 en" econo	7	7	7	7		7	7	7	7	7	7	7
			3.1	3.2	3.3	3	.4	3.5	3.6	3.7	3.8	3.9	3.10	3.11	3.12	The fir
endall's Tau-t	b 3.1	Correlation coefficient	1,000	,619			. ,	,810 [*]	,333		,551	1,000**	1,000*`	* ,238		,810
		Знач. (2-х сторонняя)		,051				,011	,293		,091			,453		,011
		N	7	7	7		7	7	7	7	7	7	7	7	7	7
	 The final	 Correlation														
		coefficient	,810*	,810 [*]	<u> </u>	<u> </u>		,810 [*]	,524		,751 [*]	,810 [*]	,810 [*]	,429	<u> .</u>	1,00
		Знач. (2-х сторонняя)	,011	,011				,011	,099		,021	,011	,011	,176		
		N	7	7	7		7	7	7	7	7	7	7	7	7	7
to Spearman's	s 3.1	Correlation coefficient	1,000	,643			. ,	929 ^{**}	,357		,709	1,000**	1,000**	* ,357		,893 [°]
		Знач. (2-х сторонняя)		,119				,003	,432		,074			,432		,00
		N	7	7	7		7	7	7	7	7	7	7	7	7	7
	The final	Correlation coefficient	,893 ^{**}	, 893 ^{**}			- ,	893 ^{**}	,607		,873 [*]	,893 ^{**}	,893 ^{**}	,607		1,00
		Significant (2- sided)	,007	,007				,007	,148		,010	,007	,007	,148		
		N	7	7	7		7	7	7	7	7	7	7	7	7	7
3.1	Pearson's corre	lation	1	,621	.a		a,	888 ^{**}	,504	.a	,923**	,964 ^{**}	,964**	,503	.a	,917
	Significant (2-s	idad)	1	,137	1	1	1	,008	,249		,003	,000		1		
	Significant (2-3	lueu)			· ·			-		•		-	,000	,250		
	N	ided)	7	7	. 7		7	,008 7	,249 7	7	7	,000 7	,000 7	,250 7	. 7	,00 [,] 7
<u>.</u>	N			7	7		7	7	7		7	7	7	7	7	7
he final	N Pearson's corre	lation	 ,917 ^{**}	7 ,837 [*]	7		7 a	7 917 ^{**}	7 ,670	-	7 ,820 [*]	7 ,905 ^{**}	7 ,905 ^{**}	7 ,794 [*]	7	7
he final	N	lation		7	7		7 a	7	7		7	7	7	7	7	7
	N Pearson's corre	lation ided)	 ,917 ^{**} ,004 7	7 ,837 [*] ,019 7	7 .a		7 	7 917 ^{**} ,004	7 ,670 ,100	 a	7 ,820 [*] ,024	7 ,905 ^{**} ,005	7 ,905 ^{**} ,005	7 ,794 [*] ,033	7 .a	7
	N Pearson's corre Significant (2-s N cators for innovativ	lation ided) e development of t	 ,917 ^{**} ,004 7	7 ,837 [*] ,019 7	7 .a		7 	7 917 ^{**} ,004	7 ,670 ,100	 a	7 ,820 [*] ,024	7 ,905 ^{**} ,005	7 ,905 ^{**} ,005	7 ,794 [*] ,033	7 .a 7	7
	N Pearson's corre Significant (2-s N cators for innovativ	lation ided)	 ,917 ^{**} ,004 7 he green eo	7 ,837 [*] ,019 7 conomy	7 .a 7	4	7 , ,a ,, , 7 , .4	7 917 ^{**} ,004 7	7 ,670 ,100 7	 .a	7 ,820 [*] ,024 7	7 ,905 ^{**} ,005 7	7 ,905 ^{**} ,005 7	7 ,794 [*] ,033 7	7 .a 7	7 1 7 The fi
Block of indic	N Pearson's corre Significant (2-s N cators for innovativ	lation sided) e development of t Correlation	 ,917 ^{**} ,004 7 he green eo 4.1	7 ,837 [*] ,019 7 conomy 4.2	7 7 4.3	4	7 7 .4 14*	7 917 ^{**} ,004 7 4.5	7 ,670 ,100 7 4.6	 _a 7 4.7	7 ,820 [*] ,024 7 4.8	7 ,905 ^{**} ,005 7 4.9	7 ,905 ^{**} ,005 7 4.10	7 ,794* ,033 7 4.11	7 .a 7 4.12	 1 7 The fi
lock of india	N Pearson's corre Significant (2-s N cators for innovativ	e development of t Correlation coefficient Significant (2-	 ,917 ^{**} ,004 7 he green eo 4.1 1,000	7 ,837 [*] ,019 7 conomy 4.2 ,048	7 .a 7 4.3 ,143	4	7 7 .4 14*	7 917 ^{**} ,004 7 4.5 ,048	7 ,670 ,100 7 4.6 ,238	 _a 	7 ,820 [*] ,024 7 4.8 ,233	7 ,905 ^{**} ,005 7 4.9 ,000	7 ,905 ^{**} ,005 7 4.10 ,206	7 ,794 [*] ,033 7 4.11 ,048	7 7 4.12 ,238	7 1 7 The fi ,14 ,65
lock of india	N Pearson's corre Significant (2-s N cators for innovativ	e development of t Correlation coefficient Significant (2- sided)	 ,917 ^{**} ,004 7 he green eo 4.1 1,000 7 	7 ,837 [*] ,019 7 conomy 4.2 ,048 ,881 7 	7 .a 7 4.3 ,143 ,652 7 	4	7 ,a ,7 .7 .4 14* 24 7 	7 917** ,004 7 4.5 ,048 ,881 7 	7 ,670 ,100 7 4.6 ,238 ,453 7 	 .a 7 4.7 ,238 ,453 ,453 	7 ,820* ,024 7 4.8 ,233 ,497 7 	7 ,905** ,005 7 4.9 ,000 1,000 7 	7 ,905** ,005 7 4.10 ,206 ,530 7 	7 ,794* ,033 7 4.11 ,048 ,881 7 	7 7 4.12 ,238 ,453 7 	7 1 7 The fi ,14 ,65 7
lock of india	N Pearson's corre Significant (2-s N cators for innovativ b 4.1	e development of t Correlation coefficient Significant (2- sided) N	 ,917 ^{**} ,004 7 he green eo 4.1 1,000 7 7 ,143	7 ,837 [*] ,019 7 conomy 4.2 ,048 ,881 7 ,333	7 a 7 4.3 ,143 ,652 7 ,429	4	7 7 .4 .4 .14* .24 7 .38	7 917** ,004 7 4.5 ,048 ,881 7 ,524	7 ,670 ,100 7 4.6 ,238 ,453 7 ,333	 .a 7 4.7 ,238 ,453 ,453 ,333	7 ,820* ,024 7 4.8 ,233 ,497 7 -,350	7 ,905** ,005 7 4.9 ,000 1,000 7 ,178	7 ,905** ,005 7 4.10 ,206 ,530 7 ,309	7 ,794* ,033 7 4.11 ,048 ,881 7 ,905*:	7 7 4.12 ,238 ,453 7 * ,333	7 1 7 The fi ,14 ,65 7 1,00
lock of india	N Pearson's corre Significant (2-s N cators for innovativ b 4.1	e development of t Correlation coefficient Significant (2- sided) N Correlation coefficient Significant (2- sided) N	 ,917 ^{**} ,004 7 he green eo 4.1 1,000 7 ,143 ,652	7 ,837 [*] ,019 7 conomy 4.2 ,048 ,881 7 ,333 ,293	7 a 7 4.3 ,143 ,652 7 ,429 ,176		7 , , , , , , , , , , , , , , , , , , ,	7 917** ,004 7 4.5 ,048 ,881 7 ,524 ,099	7 ,670 ,100 7 4.6 ,238 ,453 7 ,333 ,293	 .a 7 ,238 ,453 ,453 ,333 ,293	7 ,820* ,024 7 4.8 ,233 ,497 7 -,350 ,308	7 ,905** ,005 7 4.9 ,000 1,000 7 ,178 ,617	7 ,905** ,005 7 4.10 ,206 ,530 7 ,309 ,347	7 ,794* ,033 7 4.11 ,048 ,881 7 ,905* ¹ ,004	7 	7 1 7 The fi ,14 ,65 7 1,00
Block of indic	b 4.1	e development of t Correlation Coefficient Significant (2- sided) N Correlation coefficient Significant (2- sided) N Correlation coefficient Significant (2- sided) N Correlation Correlation	 ,917 ^{**} ,004 7 he green eo 4.1 1,000 7 7 ,143	7 ,837 [*] ,019 7 conomy 4.2 ,048 ,881 7 ,333	7 a 7 4.3 ,143 ,652 7 ,429		7 , , , , , , , , , , , , , , , , , , ,	7 917** ,004 7 4.5 ,048 ,881 7 ,524	7 ,670 ,100 7 4.6 ,238 ,453 7 ,333	 .a 7 4.7 ,238 ,453 ,453 ,333	7 ,820* ,024 7 4.8 ,233 ,497 7 -,350	7 ,905** ,005 7 4.9 ,000 1,000 7 ,178	7 ,905** ,005 7 4.10 ,206 ,530 7 ,309	7 ,794* ,033 7 4.11 ,048 ,881 7 ,905*:	7 7 4.12 ,238 ,453 7 * ,333	7 1 7 The fi ,14 ,65 7 1,00 7
Block of indic Cendall's Tau-b	b 4.1	e development of t Correlation Coefficient Significant (2- sided) N	 ,917 ^{**} ,004 7 he green eo 4.1 1,000 7 ,143 ,652 7	7 ,837 [*] ,019 7 conomy 4.2 ,048 ,881 7 ,333 ,293 7 ,071	7 a 7 4.3 ,143 ,652 7 ,429 ,176 7	4 ,7: ,0 ,2 ,2 ,4	7 , ,a , ,a , ,7 , ,4 , 14* , 124 , 7 , , <td< td=""><td>7 917** ,004 7 4.5 ,048 ,881 7 ,524 ,099 7</td><td>7 ,670 ,100 7 4.6 ,238 ,453 7 ,333 ,293 7 ,250</td><td> .a 7 ,238 ,453 ,453 ,453 ,453 ,333 ,293 ,293 7</td><td>7 ,820* ,024 7 4.8 ,233 ,497 7 -,350 ,308 7</td><td>7 ,905** ,005 7 4.9 ,000 1,000 7 ,178 ,617 7</td><td>7 ,905** ,005 7 4.10 ,206 ,530 7 ,309 ,347 7</td><td>7 ,794* ,033 7 4.11 ,048 ,881 7 ,905*: ,004 7</td><td>7 4.12 ,238 ,453 7 ,333 ,293 7 ,286</td><td>7 1 7 The fi ,14 ,65 7 1,00</td></td<>	7 917** ,004 7 4.5 ,048 ,881 7 ,524 ,099 7	7 ,670 ,100 7 4.6 ,238 ,453 7 ,333 ,293 7 ,250	 .a 7 ,238 ,453 ,453 ,453 ,453 ,333 ,293 ,293 7	7 ,820* ,024 7 4.8 ,233 ,497 7 -,350 ,308 7	7 ,905** ,005 7 4.9 ,000 1,000 7 ,178 ,617 7	7 ,905** ,005 7 4.10 ,206 ,530 7 ,309 ,347 7	7 ,794* ,033 7 4.11 ,048 ,881 7 ,905*: ,004 7	7 4.12 ,238 ,453 7 ,333 ,293 7 ,286	7 1 7 The fi ,14 ,65 7 1,00
endall's Tau-b	b 4.1	e development of t Correlation Coefficient Significant (2- sided) N Correlation coefficient Significant (2- sided) N Correlation coefficient Significant (2- sided) N Correlation coefficient Correlation coefficient	 ,917 ^{**} ,004 7 he green eo 4.1 1,000 7 ,143 ,652 7 1,000	7 ,837 [*] ,019 7 conomy 4.2 ,048 ,881 7 ,333 ,293 7	7 a 7 4.3 ,143 ,652 7 ,429 ,176 7 ,179	4 ,7 ,7 ,0 ,0 ,2 ,4 ,4 ,8 ,8 ,8	7 , ,a , ,a , ,7 , ,4 , 14* , 24 , 7 , ,	7 917** ,004 7 4.5 ,048 ,881 7 ,524 ,099 7 ,143	7 ,670 ,100 7 4.6 ,238 ,453 7 ,333 ,293 7	 .a 7 4.7 ,238 ,453 ,453 ,453 ,333 ,293 ,293 7 ,250	7 ,820* ,024 7 4.8 ,233 ,497 7 -,350 ,308 7 ,299	7 ,905** ,005 7 4.9 ,000 1,000 7 ,178 ,617 7 ,000	7 ,905** ,005 7 4.10 ,206 ,530 7 ,309 ,347 7 ,222	7 ,794* ,033 7 4.11 ,048 ,881 7 ,905* ¹ ,004 7 ,004	7 3 7 4.12 ,238 ,453 7 * ,333 ,293 7	7 1 7 The fi ,14 ,65 7 1,00 7 ,14
endall's Tau-b	N Pearson's corre Significant (2-s N cators for innovativ b 4.1 The final 's 4.1	e development of t Correlation Coefficient Significant (2- sided) N	 ,917 ^{**} ,004 7 he green eo 4.1 1,000 7 ,143 ,652 7 1,000	7 ,837* ,019 7 conomy 4.2 ,048 ,881 7 ,333 ,293 7 ,071 ,071	7 a 7 4.3 4.3 ,143 ,652 7 ,429 ,176 7 ,179 ,179	4 ,7: ,0 ,2 ,4 ,8 ,8 ,0	7 , ,a , ,a , ,7 , ,7 , ,4 , 14* , ,24 , ,24 , ,24 , ,38 , ,53 , ,57* ,	7 917** ,004 7 4.5 ,048 ,881 7 ,524 ,099 7 ,143 ,760	7 ,670 ,100 7 4.6 ,238 ,453 ,453 7 ,333 ,293 7 ,250 ,589	 .a 7 4.7 ,238 ,453 ,453 ,453 ,333 ,293 ,293 ,293 7 ,250 ,589	7 ,820* ,024 7 4.8 ,233 ,497 7 -,350 ,308 7 ,299 ,515	7 ,905** ,005 7 4.9 ,000 1,000 7 ,178 ,617 7 ,000 1,000	7 ,905** ,005 7 4.10 ,206 ,530 7 ,309 ,347 7 ,222 ,632	7 ,794* ,033 7 4.11 ,048 ,881 7 ,905** ,004 7 ,004 7 ,004 7 ,005** ,004 7 ,036 ,939	7 4.12 ,238 ,453 7 ,333 ,293 7 ,286 ,535	7 7 The fi ,14 ,65 7 1,00 7 ,14 ,76
Block of indic	b 4.1	e development of t Correlation Coefficient Significant (2- sided) N Correlation coefficient Significant (2- sided) N Correlation coefficient Significant (2- sided) N Correlation coefficient Significant (2- sided)	 ,917 ^{**} ,004 7 he green eo 4.1 1,000 7 ,143 ,652 7 1,000 7	7 ,837 [*] ,019 7 conomy 4.2 ,048 ,881 7 ,333 ,293 7 ,071 ,071	7 a .7 4.3 ,143 ,652 7 ,429 ,176 7 ,179 ,179 ,179	4 ,7: ,0 ,2 ,2 ,4 ,8! ,0	7 , ,a	7 917** ,004 7 4.5 ,048 ,881 ,881 ,7 ,524 ,099 7 ,143 ,760 7	7 ,670 ,100 7 4.6 ,238 ,453 7 ,333 ,293 7 ,250 ,589 7	 .a 7 4.7 ,238 ,453 ,453 ,453 ,333 ,293 ,293 ,293 ,293 ,250 ,589 7	7 ,820* ,024 7 4.8 ,233 ,497 7 -,350 ,308 7 ,308 7 ,299 ,515 7	7 ,905** ,005 7 4.9 ,000 1,000 7 ,178 ,617 7 ,000 1,000	7 ,905** ,005 7 4.10 ,206 ,530 7 ,309 ,347 7 ,322 ,347 7 ,222 ,632	7 ,794* ,033 7 4.11 ,048 ,881 7 ,905** ,004 7 ,004 7 ,004 7 ,033 ,004 7 ,036 ,939 7	7 4.12 ,238 ,453 ,453 ,453 ,238 ,453 ,293 ,333 ,333 ,333 ,333 ,333 ,333 ,333 ,333 ,333 ,333	7 1 7 The fi ,14 ,65 7 1,00 7 ,14 ,76 7
Block of indic	N Pearson's corre Significant (2-s N cators for innovativ b 4.1 The final 's 4.1	e development of t Correlation Coefficient Significant (2- sided) N Correlation Coefficient	 ,917** ,004 7 he green eo 4.1 1,000 7 ,143 ,652 7 1,000 7 1,000	7 ,837* ,019 7 conomy 4.2 ,048 ,881 7 ,333 ,293 7 ,071 ,071 ,879 7 	7 .a 4.3 ,143 ,652 7 ,429 ,176 7 ,176 7 ,176 7 ,176 7 ,179 ,702 7		7 , ,a , ,a , ,7 , ,4 , 14* , ,24 , ,24 , ,38 , <	7 917** ,004 7 4.5 ,048 ,881 ,048 ,881 ,048 ,099 7 ,143 ,760 7 ,143	7 ,670 ,100 7 4.6 ,238 ,453 7 ,333 ,293 7 ,250 ,250 ,589 7 	 .a 7 4.7 ,238 ,453 ,453 ,453 ,238 ,233 ,293 ,293 ,293 ,250 ,589 7 ,250	7 ,820* ,024 7 4.8 ,233 ,497 7 -,350 ,308 7 ,308 7 ,299 ,515 7 	7 ,905** ,005 7 4.9 ,000 1,000 7 ,178 ,617 7 ,000 1,000 1,000	7 ,905** ,005 7 4.10 ,206 ,530 7 ,309 ,347 7 ,222 ,632 7 	7 ,794* ,033 7 4.11 ,048 ,881 7 ,905** ,004 7 ,004 7 ,004 7 ,005 ,905 ,004 7 ,036 ,939 7	7 4.12 ,238 ,453 ,453 ,453 ,238 ,453 ,293 ,333 ,333 ,333 ,333 ,333 ,333 ,333 ,333 ,333 ,333	7 1 7 7 7 7 7 7 7 7 1,14 ,65 7 1,00 1,00 7 ,14 ,65 7 1,00 1,00 1,00

4.1	Pearson's corr	elation	1	,124	,060	,890**	,704	,356	,156	,341	-,087	,477	,358	,750	,650
	Significant (2-	-sided)		,791	,899	,007	,078	,433	,739	,454	,853	,279	,430	,052	,114
	N		7	7	7	7	7	7	7	7	7	7	7	7	7
The final	Pearson's corr	elation	,650	,358	,356	,906**	,957**	,443	,265	-,042	-,041	,730	,925**	,809*	1
	Significant (2-	-sided)	,114	,431	,433	,005	,001	,319	,565	,929	,931	,063	,003	,027	
	N		7	7	7	7	7	7	7	7	7	7	7	7	7
The block of ind	licators of inves	stment development	of the "gre	een" econo	omy					•				•	
			5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	5.10	5.11	5.12	The final
Kendall's Tau-b	5.1	Correlation coefficient	1,000		-,048	,524	,238		,619		,683*	,524	1,000**	,429	,810*
		Significant (2- sided)			,881	,099	,453		,051		,033	,099		,176	,011
		N	7	7	7	7	7	7	7	7	7	7	7	7	7
	The final	Correlation coefficient	,810*		,143	,524	,429		,810*		,683*	,714*	,810*	,619	1,000
		Significant (2- sided)	,011		,652	,099	,176		,011		,033	,024	,011	,051	
		N	7	7	7	7	7	7	7	7	7	7	7	7	7
Ro Spearman's	5.1	Correlation coefficient	1,000		,000	,679	,321		,786*		,847*	,679	1,000**	,643	,929**
		Significant (2- sided)			1,000	,094	,482		,036		,016	,094		,119	,003
		N	7	7	7	7	7	7	7	7	7	7	7	7	7
	The final	Correlation coefficient	,929**		,214	,643	,536		,929**		,775*	,893**	,929**	,750	1,000
		Significant (2- sided)	,003		,645	,119	,215		,003		,041	,007	,003	,052	
		N	7	7	7	7	7	7	7	7	7	7	7	7	7
5.1	Pearson's corr	elation	1	.a	-,454	-,024	,124	.a	,732	.a	,877**	,676	1,000**	,956**	,821*
	Significant (2-	-sided)			,307	,959	,791		,062		,010	,095	,000	,001	,023
	N		7	7	7	7	7	7	7	7	7	7	7	7	7
The final	Pearson's corr	elation	,821*	.a	,093	,412	,513	.a	,943**	.a	,857*	,937**	,821*	,750	1
	Significant (2-	-sided)	,023		,842	,358	,239		,001		,014	,002	,023	,052	
	N		7	7	7	7	7	7	7	7	7	7	7	7	7

*. Correlation is significant at the level of 0.05 (two-sided).

**. Correlation is significant at the level of 0.01 (bilateral).

a. Computation is impossible, because at least one of the variables is a constant.

Source: Prepared by the authors.

The correlation analysis allowed leaving 18 key indicators that exert maximum impact on complex indicators of the level of development of the "green" economy:

The gross profit of the economy and gross mixed incomes in the regions of the Russian Federation;

- 1.3 Indices of the physical volume of retail trade turnover;
- 2.5 Fertility rate;
- 3.1 Current (operational) costs of protecting the environment;

3.2 Expenditures for capital repairs of fixed assets for environmental protection;

3.5 Investments in fixed assets aimed at protecting the environment and rational use of natural resources; 3.8 Special costs associated with environmental innovation;

3.9 Information on payment for negative impact on the environment (environmental payments);

3.10 Emissions of pollutants into the atmospheric air;

4.4 The share of people engaged in research and development in the average annual number of employees in the economy of the region;

4.5 Specific weight of organizations that carried out technological innovations in the total number of organizations (by industrial production organizations);

4.11 Number of advanced manufacturing technologies developed in the region, per million people of economically active population;

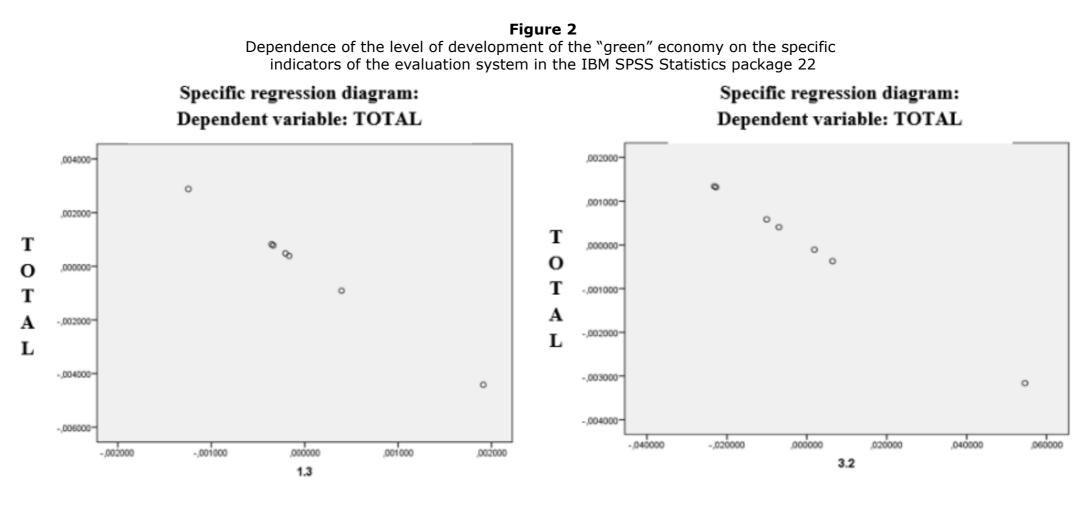
4.12 Number of articles published in peer-reviewed journals indexed at RSCI, per 10 researchers;

- 5.1 Investments in fixed assets (without budget investments) per capita;
- 5.7 Direct investments into Russia from abroad;
- 5.9 The ratio of the volume of investments in fixed assets to the gross regional product;
- 5.10 The amount of attracted extra-budgetary funds;
- 5.11 The volume of investments in fixed assets, excluding budgetary funds, per 1 person.

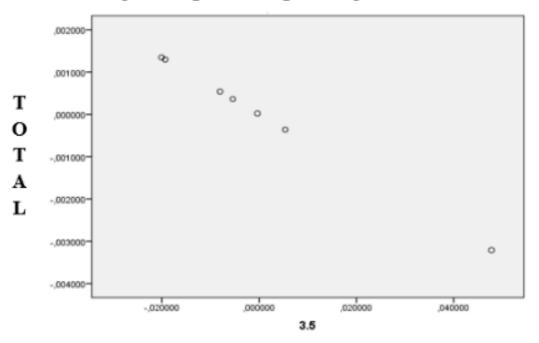
It is noteworthy that the largest number of private indicators fell on the environmental block, which proves a direct relationship between the sustainability of development and the ecological well-being of the territory (Rudneva et al., 2016).

At the second stage, a survey of identified private indicators was conducted on the basis of constructing multifactor models of the green economy indicator in the IBM SPSS Statistics 22 software package and the Analysis-Regression-Linear tool with multiple variables, i.e. The method of excluding minor indicators from 18 previously selected was used. In this case, multiple linear regression will reflect the impact of the most significant private indicators of the "green" economy's assessment on the integral resultant index (Table 3, Figure 2). Calculations allow to optimize the evaluation procedure.

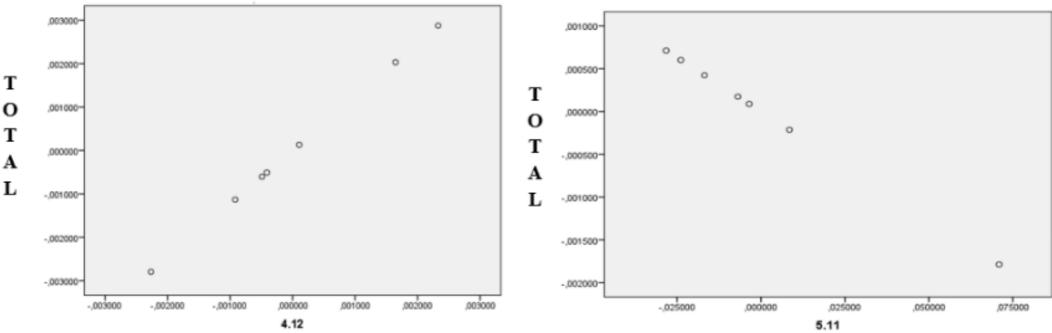
	Descriptive statistics of specific in	dicators of the green economy	
	Average value	Standard deviation	N
TOTAL	,00223429	,003998270	7
1.1	,07430429	,062416723	7
1.3	,00224286	,001083754	7
2.5	,12454000	,058898086	7
3.1	,03545857	,036147530	7
3.2	,04190857	,035996464	7
3.5	,04537429	,036459649	7
3.8	,01289143	,020096953	7
3.9	,00981000	,009018049	7
3.10	,00951286	,008471351	7
4.4	,03530000	,023798459	7
4.5	,01010143	,005921454	7
4.11	,11511429	,090330715	7
4.12	,00347857	,001803390	7
5.1	,02149714	,028782837	7
5.7	,01857143	,024856028	7
5.9	,03925714	,037910370	7
5.10	,02241143	,026277749	7
5.11	,02687000	,035977754	7
Coefficients of	the multiple regression model for assess	ing the level of the "green" economy of	the territory

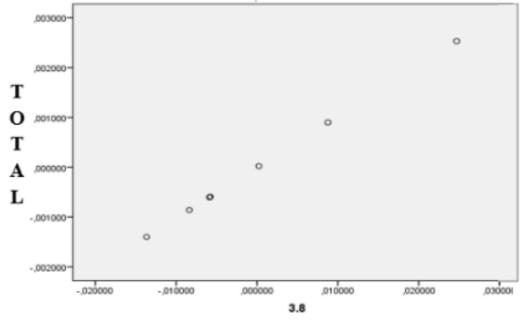

Table 3

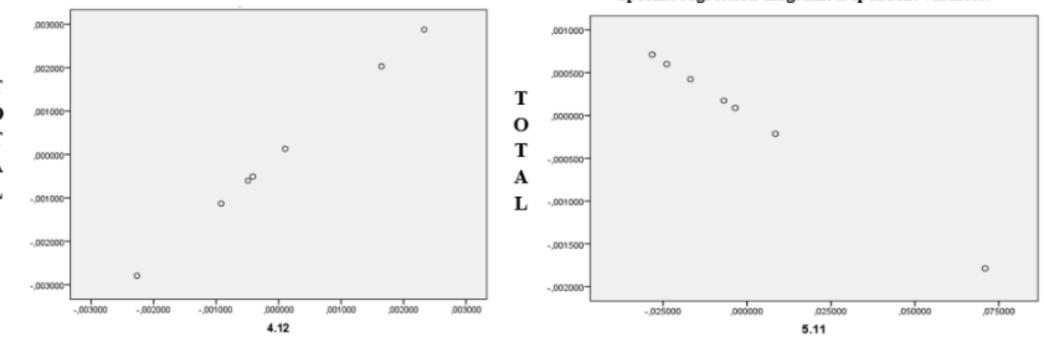
Building a multiple regression model for assessing the level of the green economy of the territory (fragmented summary table) IBM SPSS Statistics software package 22 *


	Model	95,0% Cor interval			Correlations	;	Colline statis	-		indardized ficients		dardized fficients
		Bottom line	Upper bound	Zero order	Partially	Component	Tolerance	VIF	В	Standard Error	1	Beta
1	(Constant)	,008	,008						,008	,000		
	1.3	-2,313	-2,313	- ,544	-1,000	-,562	,804	1,244	-2,313	,000	-	,627
	3.2	-,058	-,058	- ,493	-1,000	-,385	,544	1,839	-,058	,000	-	,521
	3.5	-,067	-,067	- ,527	-1,000	-,387	,399	2,506	-,067	,000	-	,613
	3.8	,102	,102	- ,230	1,000	,333	,417	2,396	,102	,000	,	.515
	4.12	1,234	1,234	,227	1,000	,480	,745	1,343	1,234	,000	,	.557
	5.11	-,025	-,025	- ,316	-1,000	-,212	,877	1,140	-,025	,000	-	,227
Corre	elations of tl	he coefficie	nts of th	e multi	ple regression m	odel for asse	ssing the l	evel of t	he "gree	n" econor	ny of the	eterritory
		Model			5.11	4.:	12	1.3	3.	2	3.8	3.5
	1	Correlation	5 5.	11	1,000	,16	57	-,104	,23	6	-,138	-,151
			4.	12	,167	1,0	00	-,080	-,0	13	-,199	-,176
			1.	.3	-,104	-,0	80	1,000	,11	.4	-,312	,006
			3.	2	,236	-,0	13	,114	1,0	00	-,207	-,434
			3.	8	-,138	-,1	99	-,312	-,20	07	1,000	-,439
			3.	5	-,151	-,1	76	,006	-,43	34	-,439	1,000
Diagı	nosis of the	collinearity	of the c	oefficie	ents of the multip of t	le regressior he territory	n model foi	⁻ assessii	ng the le	evel of the	"green"	economy
								Shares o	of varianc	e		
				Co	nditionality							

Model	Measurement	Eigenvalue	Conditionality index	(Constant)	1.3	3.2	3.5	3.8	4.12	5.11
1	1	5,325	1,000	,00	,00	,01	,00	,01	,00	,01
	2	,670	2,819	,00	,00	,04	,01	,07	,00	,49
	3	,486	3,309	,03	,02	,00	,01	,25	,03	,23
	4	,230	4,814	,00	,11	,43	,03	,22	,03	,13
	5	,130	6,407	,00	,34	,19	,12	,02	,47	,01
	6	,105	7,118	,00	,06	,24	,83	,14	,20	,07
	7	,054	9,949	,96	,46	,10	,01	,31	,27	,05


* *dependent variable: TOTAL* Source: Prepared by the authors. The performed instrumental calculation procedures demonstrate the logicality of exclusion, for example, from the initial list of indicator 1.1 "Gross profit of the economy and gross mixed incomes by regions of the Russian Federation", as was previously mentioned in the study of a group of scientists led by S.N. Bobylev while drawing up the ecological and economic rating of Russian regions (Bobylev et al., 2013).


Specific regression diagram: Dependent variable:


Specific regression diagram: Dependent variable:

Specific regression diagram: Dependent variable:

Specific regression diagram: Dependent variable:

Source: Prepared by the authors.

This relationship can be represented as the following equation (formula 1):

$$I_{RGE} = 1,234 * X_{4.12} + 0,102 * X_{3.8} - 2,313 * X_{1.3} - 0,058 * X_{3.2} - 0,067 * X_{3.5} - 0,025 * X_{5.11} + 0,008,$$
(1)

where IRGE is the integral index of the development of the "green" economy in the economic space of the region;

X 4.12 is the number of articles published in peer-reviewed journals, indexed at RSCI, per 10 researchers;

X 3.8 is special costs associated with environmental innovation;

X 1.3 is indices of the physical volume of retail trade turnover;

X 3.2 is expenses for capital repairs of the main funds for environmental protection;

X 3.5 is investment in fixed assets aimed at protecting the environment and rational use of natural resources;

X 5.11 is the volume of investments in fixed assets, excluding budgetary funds, per 1 person.


2.1. Calculations

At the third stage, the integral index of the development of the "green" economy in the economic space of the region (IRGE) was calculated according to the formula (IRGE) (Table 4, figure 3).

UrFD subject	2010	2011	2012	2013	2014	2015
Kurgan region	0,00824	-0,00102	0,01171	0,02035	0,01397	0,00800
Sverdlovsk region	-0,00107	-0,00544	0,00391	0,00728	0,00074	-0,00444
Tyumen region	0,00317	-0,00464	0,00206	-0,00385	-0,00231	-0,01765
Khanty-Mansi Autonomous Area- Yugra	0,00950	0,00001	0,00815	0,00697	0,00507	-0,00930
The Yamalo-Nenets Autonomous Okrug	0,01543	-0,00366	0,00703	0,00927	0,00263	-0,00898
Tyumen Region (without autonomous okrugs)	-0,04528	0,00738	0,00109	-0,00723	-0,00624	-0,00276
Chelyabinsk region	-0,00050	-0,00714	0,00694	0,01099	0,00624	-0,01646

Table 4Summary table of values of integral index of development of the "green" economyof the region by the multiple linear regression formula (IRGE) for UrFD subjects, 2010 - 2015*

* Using the data from the official site of the "Unified Interagency Information and Statistical System (EMISS)"

Source: Prepared by the authors.

According to the actual calculated IRGE values for UrFD subjects and types of phase states of the vector development of the green economy (Gurieva & Simarova, 2016), the regions were divided into 3 groups according to the values of the integral result index of the development of the "green" economy in the economic space (table 5).

Table 5
Groups of regions (taxa) by the value of the integral index of the development of
the "green" economy in the economic space of the region according to the multiple
linear regression formula

The name of a group of regions (taxa)	Value (IRGE) using the multiple linear regression formula	Description according to the types of phase states of the vector development of the "green" economy
"Green" Regions (leading regions)	[0,6;1]	The introduction of the concept of a "green" economy. Accelerated growth of the "green" directions in the development of the region. The closer to the value of 1, the more the situation is characterized by being close to absolute stability.
"Brown" Regions (regions with insufficiently high level of development)	[0,00001;0,59999]	Gradual weakening of economic development forces, poor perception of the concept of a "green" economy and the acquisition of positive dynamics of the development of a "green" economy with a shift in values to the right limit of values.
"Red" Regions (outsiders)	[-1;0]	Weak perception of the concept of a "green" economy. The phase of economic losses.

Source: Prepared by the authors.

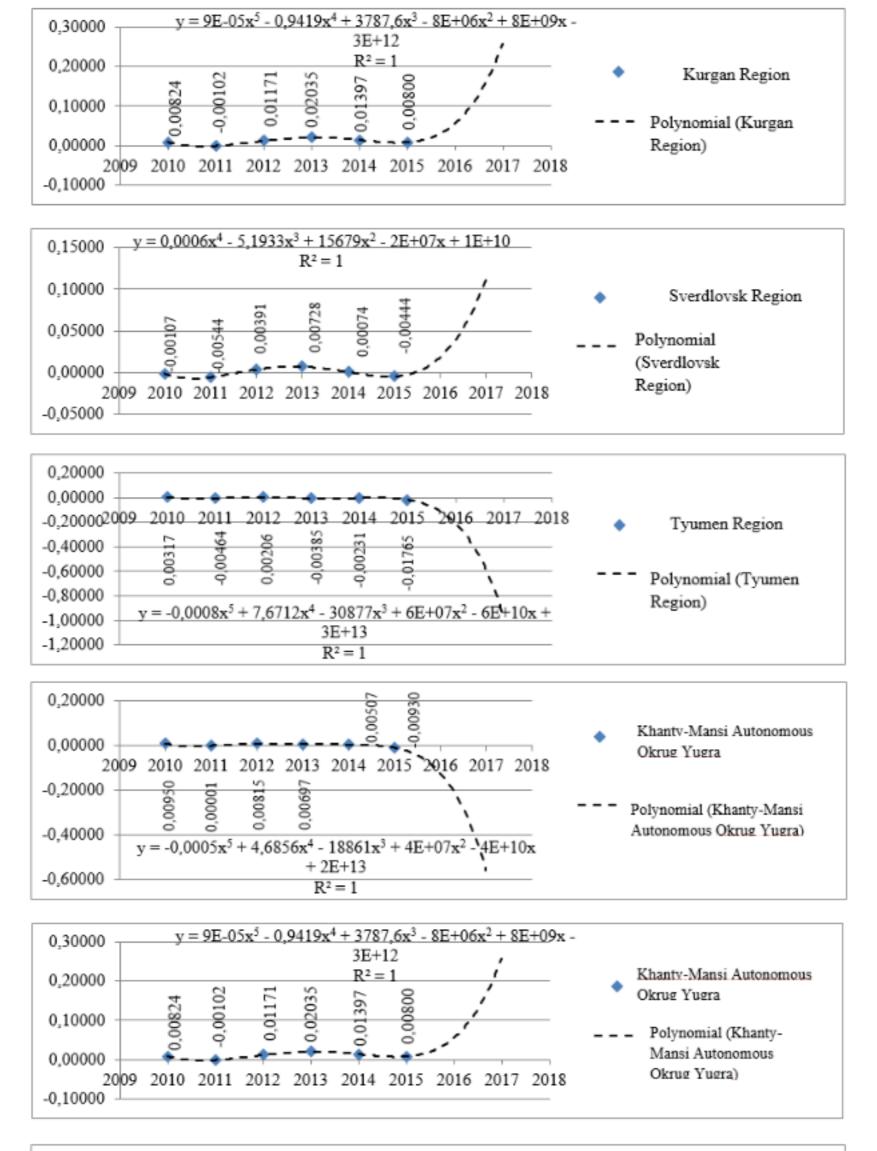
On the basis of results of the IRGE integral index and the criteria for the division of regions (Table 4, 5), a rating of the regions of the Urals Federal District was compiled for the level of development of the "green" economy as of 2010, 2015 and 2017 (Table 6).

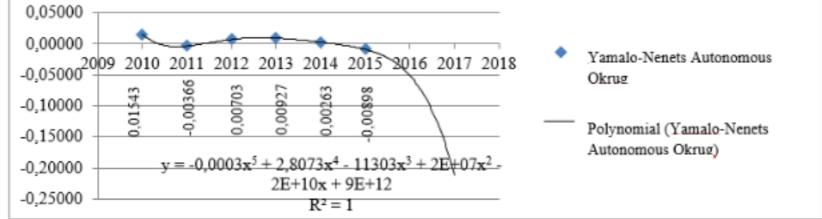
Table 6
Rating of subjects by the level of development of the "green" economy in the
economic space of the Urals Federal District as of 2010, 2015 and 2017

Region	2010	2015	2017
		ar regression formula dicators)	(the initial system of assessment for 60 indicators)
"Green" Regions	-	-	-
"Brown" Regions	1 place YaNAO		1 place Kurgan region

	2nd place KhMAO		2 place Sverdlovsk region
	3rd place Kurgan region	1 place Kurgan region	3rd place Tyumen region
			4 place KhMAO
	4 place Tyumen region		5 and 6 place YaNAO Tyumen Region without the autonomous okrug
			7 place Chelyabinsk region
"Red"	5 place	2nd place	-

Regions	Chelyabinsk region	Tyumen Region without AO
	6 place Sverdlovsk region	3rd place Sverdlovsk region
	7 place Tyumen Region without autonomous okrug	4 and 5 place KhMAO YaNAO
		6 place Chelyabinsk region
		7 place Tyumen region


Source: Prepared by the authors.


A high level of development of the "green" economy on the territory of the Urals Federal District is not observed in any entity, which may be related to the industrial specialization of the federal district. The leader in development is the Kurgan region. Table 5 compares the results obtained with the data obtained on the system for a full assessment of the level of development of the "green" economy (60 indicators) with a range of finite values from 0 to 1 inclusively. When comparing the final calculations, their logical interconnection is observed (Kolmakov et al., 2015).

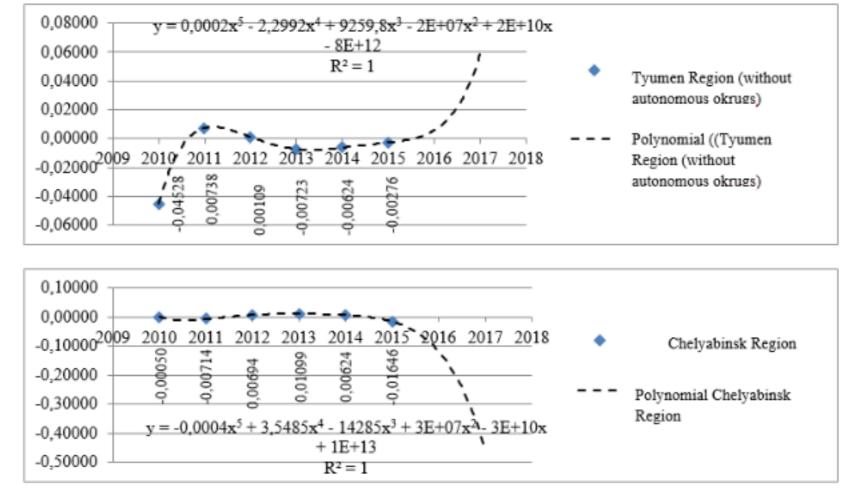

For effective application of the developed approach for assessing the level of development of the "green" economy of the territory of the regions, it is expedient to forecast possible options for changing the IRGE values based on the existing trend using mathematical modeling tools. In our study, an attempt was made to predict the values of the integral resultant index IRGE for 2016 - 2017, in the MS Excel software package, the Trend Line tool, and we consider it unreasonable to calculate further due to unpredictability of global factors (Figure 4).

Figure 4

Forecast of the integral index of the development of the "green" economy in the economic space of the region using the multiple linear regression (IRGE) formula for 2016-2017

Source: Prepared by the authors.

The results obtained not only provide for rating of subjects by the level of development of the "green" economy in the economic space of the Urals Federal District, but also reflect the qualitative parameters of the state of the regions through quantitative estimates.

At the fourth stage of the study, it is proposed to introduce the grouping parameter of the subjects according to the dynamics of the development of the integral resultant index IRGE, represented through the calculation of the growth rates and their averaged value. This qualitative characteristic will allow displaying the general dynamics of the development of the "green" economy and sustainable development in the whole for the studied subject, which can also serve as a certain indicator of the effectiveness of the conducted regional policy (Table 7).

			5	,		- 5		- (-	,, _		
	Growth rate					Increase rate				Average	
UrFD subject	2011	2012	2013	2014	2015	2011	2012	2013	2014	2015	value
Kurgan region	-0,12	-11,50	1,74	0,69	0,57	-1,12	-12,50	0,74	-0,31	-0,43	-2,73
Sverdlovsk region	5,08	-0,72	1,86	0,10	-5,98	4,08	-1,72	0,86	-0,90	-6,98	-0,93
Tyumen region	-1,46	-0,44	-1,87	0,60	7,63	-2,46	-1,44	-2,87	-0,40	6,63	-0,11
Khanty-Mansi Autonomous Okrug-Yugra	10,62	0,08	0,86	0,73	-1,84	9,62	-0,92	-0,14	-0,27	-2,84	1,09
The Yamalo- Nenets Autonomous Okrug	-0,24	-1,92	1,32	0,28	-3,41	-1,24	-2,92	0,32	-0,72	-4,41	-1,79
Tyumen Region (without autonomous okrugs)	-0,16	0,15	-6,63	0,86	0,44	-1,16	-0,85	-7,63	-0,14	-0,56	-2,07
Chelyabinsk	14,17	-0,97	1,58	0,57	-2,64	13,17	-1,97	0,58	-0,43	-3,64	1,54

Table 7Dynamics of the integral index of the development of the "green" economy inthe economic space of the region by the multiple linear regression formula (IRGE), 2010-2015*

region	
--------	--

Source: Prepared by the authors.

The parameter "Dynamics of the change in the integral resultant index IRGE" suggests the separation of subjects of analysis into the following three groups:

1) "Green Leaders" taxon (high positive dynamics of IRGE with average growth rate in the range [+1,51; 3]);

2) Brown followers taxon (low positive and small negative dynamics of IRGE with average growth rate in the range [-0.6, +1.5]);

3) "Red-outsiders" taxon (high negative dynamics of IRGE with average growth rate in the range [- 0.61; -3]).

At the fifth stage, we form a two-dimensional typology of the regions of the Russian Federation from the position of developing a green with regard to the specifics of the economic space, based on the calculated parameters – "IRGE Dynamics" or "Average Growth Rate of the Integral Resultant IRGE Index" (characterizes the sustainability of development) and "Level of Development «Green» economy of the region" (the calculation is based on 6-factorial multiple linear regression, formula 1).

The portrait of the typological groups of the parametric two-dimensional typology of the regions of the Russian Federation from the standpoint of the development of the "green" economy with regard to the specifics of the economic space is presented in Table 8.

Table 8Portrait of typological groups of the parametric two-dimensional typology of RFregions from the position of development of the "green" economy with regard to
the specifics of the economic space

		т	axon
Name	A typological group portrait	Dynamics IRGE	IRGE development Level
"Neanderthals"	The region faces certain difficulties in the effectiveness of established sustainable development programs, which, as a rule, have purely top-down character. Low level of ecological and economic literacy of the population is coupled with increased anthropogenic pressure on the environment. Economic factors and interests dominate in development, which provide low potential for the development of the green economy and do not increase sustainability.	"Red outsiders"	"Red" Regions
"Traditionalists"	There are certain prospects for the development of a "green" economy in the region, there is a gradual shift of the economic dominant to other spheres of society. There are effectively implemented programs for sustainable development, work to create "green" knowledge is in progress. There are positive changes in sustainable development.	"Brown followers"	"Red" Regions
"Wanderers"	A clearly expressed potential for the development of a "green" economy, which needs to be realized. This group of regions demonstrates that the high positive dynamics of development of sustainability does not ensure the growth of its level of development. At high rates of development, though, there is no awareness of the need for a transition to a new development paradigm.	"Green Leaders″	"Red" Regions
"Innovators"	The first prerequisites for understanding the concept of a "green" economy is typical, the level of ecological literacy of the population has significantly increased, the basic directives in the field of sustainable development are being implemented more effectively. The average degree of formation of a "green" economy with a negative dynamic of development of sustainability. The apparent weakening of the influence of classical economic development factors.	"Red outsiders"	"Brown″ regions
	An equilibrium state has been reached between the		

"Followers"	ecological, social and economic development dominants. In the region, a concrete understanding of the prospects for the development of sustainability and a "green" economy was formed. Questions about its further development begin to be studied. Particular attention is paid to the "green" propaganda of a new way of development. The revealed tendency can be rather promising at imposing of a correct vector of development.	"Brown followers"	"Brown" regions
"Sprinters"	The high positive dynamics of the development of sustainability demonstrates that there has been a preponderance of economic factors, the level of the "green" economy has remained relatively low, i.e. from the equilibrium state the region took as a basis for development classical economic factors, the rate of "going greener" is decreasing.	"Green Leaders″	"Brown″ regions
"Neoconservatives"	An effective legal resource in the field of sustainable development, a high degree of the formation of a "green" economy with negative dynamics of the development of sustainability, which can be characteristic for the transition state of the region to a new paradigm of development, when the socio-legal maturity of the "greened" society actively shapes the development strategy of the region.	"Red outsiders"	Green Regions
"Persecutors"	There is a sustainable development of the "green" economy, burdened by the prevalence of economic factors in development, which is expressed in the average speed of the dynamics of the development of sustainability. To enhance effective functioning, it is necessary to realize the latent potential of all elements of the regional system.	"Brown followers"	Green Regions
``Stars″	The reference state of development, close to absolute stability, which is as yet unattainable, but demonstrates the potential for future growth and reflects the basic meaning of the green economy and the sustainable development paradigm presented at the UNO's Sustainable Development Goals	"Green Leaders″	Green Regions

Source: Prepared by the authors.

Thus, a matrix of parametric two-dimensional typology of regions is formed, which, according to the logic of its structure, correlates with the phase states of the vector development of the "green" economy (Gurieva & Simarova, 2016) of the region's economic space (Figure 6).

Figure 6 Parametric two-dimensional typology of the UrFD regions from the position of development of the "green" economy with regard to the specifics of the economic space in 2010 and 2015

		"Green	[+1,51;	<u>"Wanderers"</u>	<u>"Sprinters"</u>	<u>"Stars"</u>
IR	GEDynamics	Leaders"	3]		-	

	Weak degree of	The average degree	High degree of	
	formation of the	of formation of a	formation of the	
	"green" economy	"green" economy	"green" economy with	
	with a high positive	with a high positive	a high positive	
	dynamics of	dynamics of	dynamics of the	
	sustainability	development of	development of	
	development.	sustainability.	sustainability.	
	Vector [+1; -1]	Vector [+1; 0]	Vector [+1; +1]	
	Strength 0	Strength +1	Strength +2	
	Significant	Significant influence	Accelerated growth of	
	influence of	of classical economic	the "green" directions	
	classical economic	development	in the development of	
	factors of	factors, the	the region. The state is	1

		development, poor perception of the concept of "green" economy.	introduction of the concept of a "green" economy.	close to absolute stability.
"Brown followers	[- 7 0,6;+1,5]	<u>"Traditionalists"</u>	<u>"Followers"</u>	<u>"Persecutors"</u>
		Weak degree of formation of the "green" economy with an average dynamics of the development of sustainability.	The average degree of formation of the "green" economy with the average dynamics of development of sustainability.	The average degree of formation of the "green" economy with the average dynamics of development of sustainability.
		The vector [0; -1] Strength -1	Vector [0; 0] Strength 0	Vector [0 + 1] Strength +1
		Gradual weakening of economic development forces, poor perception of the	Average influence of classical economic factors of development. The equilibrium state of	Average influence of classical economic factors of development. Sustainable development of the
		concept of a "green" economy.	forces.	"green" economy
"Red outsiders	[- 0,61;-3]	<u>"Neanderthals"</u> -	<u>"Innovators"</u> -	<u>"Neoconservatives"</u> -
		Weak degree of the formation of a "green" economy with a negative dynamics of development of sustainability.	The average degree of formation of a "green" economy with a negative dynamics of development of sustainability.	<i>High degree of formation of the "green" economy with negative dynamics of development of sustainability.</i>
		Vector [-1; -1] Strength -2	Vector [-1; 0] Strength -1	Vector [-1; +1] Strength 0
		Weak influence of classical economic factors of development, poor perception of the concept of "green" economy. The phase of economic losses.	Weak influence of classical economic factors of development, the beginning of perception of the concept of "green" economy.	Average influence of classical economic factors of development. Sustainable development of the green economy.
		"Red" Regions	"Brown" regions	"Green" Regions
		[-1;0]	[0,00001;0,59999]	[0,6;1]
		The level of deve	lopment of the region (IRGE)	n′s "green″ economy

Figure 6 - cont. Parametric two-dimensional typology of the regions of the Russian Federation from the position of developing a "green" economy with regard to the specifics of the economic space (compiled by the author)

Leaders"	3]	Chelyabinsk Region (2010)	Chelyabinsk Region (2015)	
"Brown followers"	[- 0,6;+1,5]	<u>"Traditionalists"</u> - The Tyumen Region (2010) The Tyumen Region (2015) KhMAO (2015)	<u>"Followers"</u> _ KhMAO (2010)	<u>"Persecutors"</u>
"Red outsiders"	[- 0,61;-3]	"Neanderthals" - The Sverdlovsk Region (2010) Tyumen Region without JSC (2010) Tyumen Region without AO (2015) Sverdlovsk Region (2015) YaNAO (2015)	<u>"Innovators"</u> - Kurgan Region (2010) YaNAO (2010) Kurgan Region (2015)	<u>"Neoconservatives"</u>
		"Red" Regions	"Brown" regions	"Green" Regions
		[-1;0]	[0,00001;0,59999]	[0,6;1]
		The level of developme	ent of the region's "gree	en″ economy (IRGE)

Source: Prepared by the authors.

The results of the study show (Figure 6-cont) that a high level of development of the green economy does not provide for positive dynamic changes in the field of sustainability - the Kurgan Region (2010, 2015) and the Yamal Peninsula (2010). Despite the weak level of IRGE development, the Chelyabinsk region has a certain potential (2010, 2015), which is confirmed by the positive dynamics of the changes. Particular attention should be paid to the development program of the Sverdlovsk region, the Tyumen region without AO and KhMAO, where, with an average degree of formation of the "green" economy, there has been a negative dynamics of development of sustainability for 5 years. It should be noted that none of the investigated subjects of the Urals Federal District has a sufficiently high level of development of the "green" economy, which requires revision of the regional development programs, in order to accelerate interaction between the main elements of the "green" economy and sustainable development, which will contribute to the improvement and development of economic sustainability of the regions.

3. Conclusions

The results obtained make it possible to formulate three regularities:

1) High level of development of the "green" economy does not ensure high positive dynamic changes in the field of sustainability; it is necessary to intensify the interaction of elements of the "green" economy within the region;

2) High positive dynamics of sustainability of development ("green" economy) is possible at its low level - the identified potential of the regions should be implemented;

3) High negative dynamics of IRGE is a negative indicator at any level of development of the "green" economy, which indicates that the sustainable development programs of the region are not sufficiently developed, which leads to a weakening of its competitive advantages and a loss of investment attractiveness.

The parametric two-dimensional typology of the Urals Federal District regions shows the need for a deeper analysis with the aim of studying the constraining factors of the development of the green economy and sustainable development of the regions, identifying bottlenecks and driving growth points that can be used in the government management of sustainable development of regions. Of particular importance is the prospective study of the entire set of subjects of the Russian Federation on the basis of the typological grouping of the regions-entities based on the established in the study, from the position of developing a "green" economy and with due regard to the specifics of the economic space with the view of carrying out the clustering procedure.

Acknowledgement

The research was carried out with the financial support of the Russian Foundation for Basic Research within the framework of the scientific project No. 16-36-00218 "Theory and methodology for assessing the development of the "green economy" in the context of the theory of economic space".

Bibliographic references

Bobylev, S.N., Minakov, V.S., Solovyova, S.V. & Tretyakov, V.V. *Ecological and Economic Index of Russian Regions, 2013*. Retrieved 21 August 2017 from URL: https://new.wwf.ru/upload/iblock/dc8/index.pdf.

Gurieva, M.A. & Simarova, I.S. (2016). Development of a model for the development of a "green" economy in the economic space. *Science and business: ways of development, 5*, 86-98.

Kolmakov, V.V., Polyakova, A. G. & Shalaev, V. S. (2015). An analysis of the impact of venture capital investment on economic growth and innovation: Evidence from the USA and Russia. *Economic Annals, 60*(207), 7-37.

Korableva, A.A. (2016). Interregional comparisons in the context of economic security. *Regional economy*, *10*(144), 18-27.

Lavrik, D.A. (2002). *Typologization of regions as a basis for the formation of priorities for regional development:* PhD thesis. Ufa.

Rudneva, L.N., Pchelintseva I. G. & Gureva M.A. (2016). The Indicative System of Assessing the Level of Ecologization in the Context of the Region's Sustainable Development. *International Journal of Economics and Financial Issues*, 6(S1), 227-232.

1. Tyumen Industrial University, Tyumen, Russia, E-mail: gurievama_tsogu@bk.ru

Revista ESPACIOS. ISSN 0798 1015 Vol. 39 (Nº 31) Year 2018

[Índice]

[In case you find any errors on this site, please send e-mail to webmaster]

©2018. revistaESPACIOS.com • ®Rights Reserved